Data analytics
|
Analytics is a method which uses logical analysis to interpret large quantities of data to help with prediction and decision making. The analysis of data may include discerning trends and patterns, their interpretation and communication. Analytics is therefore the link between the data and making informed decisions. Organisations can use analytics to gain a predictive intelligence that can help shape their future plans.
Data used for analytics can be structured or unstructured. Structured data, for example, might be formatted into a table; whereas unstructured data cannot be tabulated e.g some documents or hearsay.
There are two main types of data:
- Descriptive data – this is data which describes things in the past e.g customer records, past performance, purchase history etc.
- Predictive data – this is closely linked to machine learning and looks at the future, and how to make predictions based on past events.
Once descriptive data has been gathered, it can be processed by algorithms (mathematical formulas or models) to create a model that identifies relationships in variables existing in the data and allows predictions to be made. Uncertain data for which the answers are not known e.g the type of goods that certain people in a geographical area might be interested in, can then be fed into the model which subsequently outputs what their preferences might be. This can then be reported or communicated in various formats such as tables, bar and line charts, etc.
The important result of the process is the creation of the model. Once established, data can be inputted to produce a prediction. This is the basis of machine learning which can lead to the attainment of artificial intelligence (AI).
Data analytics is useful in all walks of life but particularly in marketing where possible future consumer preferences can be predicted and therefore accommodated in campaigns. It can blend into performance analytics which may help a company measure its progress toward specific goals and to determine which actions will help achieve them.
Data analytics can be used for digital management to help construction firms to win projects and deliver them more efficiently. This is particularly apposite for large capital projects, for example, providing analysis to challenge trends in low-performance, getting a better understanding of project performance, root causes and prioritising daily activities.
Analytics will become increasingly important with the growth of big data, the internet of things and the use of sensors in the built environment.
Analyics were used by Designing Buildings Wiki to assess the relationships between subjects on the website, and the difference between what authors write about and what users read about. For more information see: Fit for purpose - Big data reveals the construction knowledge gap
NB PwC Global, Digital procurement survey 2022, defines Data analytics as: ‘…the science of analyzing raw data to make conclusions about that information.’
[edit] Related articles on Designing Buildings
- Asset information model.
- Big data.
- Building data exchange.
- Clustering.
- Common data environment.
- Data-centric business model.
- Data-driven mobility.
- Data and behaviours in construction.
- Data and infrastructure productivity.
- Data collection strategies.
- Data drop.
- Data manager.
- How data can stop waste.
- Interoperability.
- Internet of things.
- Making the most of big data.
- Open data - how can it aid the development of the construction industry?
- Predictive analytics.
- Procurement analytics.
- Top big data tools used to store and analyze data.
- Treating data as part of infrastructure
- Virtual reality and big data disrupting digital construction.
Featured articles and news
Do you take the lead in a circular construction economy?
Help us develop and expand this wiki as a resource for academia and industry alike.
Warm Homes Plan Workforce Taskforce
Risks of undermining UK’s energy transition due to lack of electrotechnical industry representation, says ECA.
Cost Optimal Domestic Electrification CODE
Modelling retrofits only on costs that directly impact the consumer: upfront cost of equipment, energy costs and maintenance costs.
The Warm Homes Plan details released
What's new and what is not, with industry reactions.
Could AI and VR cause an increase the value of heritage?
The Orange book: 2026 Amendment 4 to BS 7671:2018
ECA welcomes IET and BSI content sign off.
How neural technologies could transform the design future
Enhancing legacy parametric engines, offering novel ways to explore solutions and generate geometry.
Key AI related terms to be aware of
With explanations from the UK government and other bodies.
From QS to further education teacher
Applying real world skills with the next generation.
A guide on how children can use LEGO to mirror real engineering processes.
Data infrastructure for next-generation materials science
Research Data Express to automate data processing and create AI-ready datasets for materials research.
Wired for the Future with ECA; powering skills and progress
ECA South Wales Business Day 2025, a day to remember.
AI for the conservation professional
A level of sophistication previously reserved for science fiction.
Biomass harvested in cycles of less than ten years.
An interview with the new CIAT President
Usman Yaqub BSc (Hons) PCIAT MFPWS.
Cost benefit model report of building safety regime in Wales
Proposed policy option costs for design and construction stage of the new building safety regime in Wales.
Do you receive our free biweekly newsletter?
If not you can sign up to receive it in your mailbox here.

























